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Radical-molecule reaction barriers are often the product of an avoided curve crossing between two states:
the reactant ground state, which ultimately correlates with a product ionic state, and a reactant ionic state,
which ultimately correlates with the product ground state. The energy, location, and loose-mode frequencies
of the transition state are controlled by this interaction. The curve crossing itself is constrained by long-range
Coulombic forces acting primarily on the ionic states as the reactants approach each other. The crossing
height is in essence a geometric mean of the ionic surface heights; a low ionic state energy in either the
reactants or the products will force a low reaction barrier. The crossing location is controlled primarily by
any asymmetry in the reactant and product ionic heights, while the interaction distance of the transition state
is controlled by a balance in gradients on the ground and ionic states. The frequencies related to translation
of the separated reagents within the center of mass frame of reference are controlled by the same physics
controlling the barrier height, as is the imaginary frequency associated with the reaction itself. This drives a
tight correlation between barrier heights, transition state frequencies (and thus preexponential terms), and the
imaginary frequency (and thus the tunneling term). This is demonatrated by analyzing a series of H atom
transfers from a mainfold of alkanes to a mainfold of atoms. The Hammond postulatesreaction enthalpy
controls transition state locationsdoes not correspond to the mechanism controlling either barrier height or
location, but rather appears to work in cases where ionization potential correlates with bond strengths.

Introduction

In several recent papers1-3 we have described a general theory
of radical-molecule reactivity on the basis of the interaction
of ground and ionic states along the reaction coordinate. The
theory is based on the proposition that an avoided curve crossing
involving reactant and product ground and ionic states controls
reaction barrier heights in many radical-molecule reactions. It
draws on the work of Fukui,4 Woodward and Hoffmann,5 and
Shaik and Pross6,7 using orbital and far-field interactions to
define the boundary conditions for a two-state avoided curve
crossing problem. The unique aspect of this theory is the
emphasis it places on the ionic states; they are the dominant
excited states controlling the curve crossing height in many
neutral reactions, not merely sources of a polar perturbation on
an otherwise neutral transition state. Its unique success is to
predict the evolution of barrier heights in a wide range of
reactions, simultaneously describing both radical and molecule
reactivity in both atom transfer and addition reactions.

The ionic state in this curve crossing is formed by transferring
an electron from a high energy orbital of the electron donor
(usually the molecule) to an unoccupied or singly occupied
orbital of the electron acceptor (usually the radical). The state
is constrained to the geometry of the ground state; the initial
energy is thus the difference of the vertical ion energies (IP-
EA)v when the reactants are separated. As the reactants
approach, however, the energy of the ionic state decreases
dramatically (∼e2/r). It rapidly drops to a lower energy than
any neutral excited state, and eventually participates in the

avoided curve crossing that forms the reaction barrier. Only at
the curve crossing is the state occupied, and only if the crossing
occurs at a great distance, in harpoon or electron jump reactions,
does the reaction possess any observable ionic character.8 Our
recent papers1-3 demonstrate that a curve-crossing model
bounded by these ionic states is far more predictive than either
a covalent singlet-triplet splitting model6 or reaction enthalpy
correlation.9 In particular, the ionic curve-crossing model
simultaneously predicts both radical and molecule reactivity,
which the other theories cannot do.

Here we shall extend the predictive range of the theory from
barrier heights to rate constants by showing how it describes
the modes normal to the reaction coordinate. In particular, we
will show that the loose bending modes responsible for most
variation in preexponential terms are constrained by the same
curve crossing, and that the frequencies of these modes are
tightly coupled to the barrier heights. In the same manner, the
imaginary frequency for atom transfer is also tied to the barrier
height. Furthermore, the stretching mode associated with the
attacking radical is insensitive to the excited-state energy but
sensitive to the collisional reduced mass. With this understand-
ing, we shall describe the evolution in both barrier heights and
preexponential terms (including tunneling coefficients) for a
homologous set of reactions involving a manifold of molecules
reacting with a manifold of radicals.

To extend the theory we will focus on two things: first,
locating the transition state, and second, describing the critical
vibrational frequencies at that location. Location has two
components: the distance between the reactants at the transition
state, and the position of the transition state along the coordinate
describing molecular distortion (ie, atom transfer). The reactant
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distance is controlled by a relationship between ground and
excited-state energy gradients, while the transition state position
(the earliness or lateness of the transition state) is controlled by
asymmetry between reactant and product excited-state energies.
The physics controlling the transition state location also controls
the potential energy curvature at this saddle point.

The modes critical to reactivity can all be related to
translational modes of the attacking radical, though this can be
obscured by a normal-mode analysis. As the excited-state energy
varies from reaction to reaction, the radical stretching frequency
remains constant, while the radical bending frequencies vary
in concert with the barrier height. The bending frequencies
control the preexponential term, while the stretching frequency,
coupled with the stretch associated with the atom transfer,
controls the zero-point energy change between the reactants and
the transition state.

A focus of our previous work was identifying the true
controlling factors in barrier height regulation amidst a sea of
correlated terms. Here we have a similar goal for the preexpo-
nential. In Figure 1 we show the preexponential terms from
our previous work on H atom abstractions1 (adjusted for
collisional reduced mass and number of reactive hydrogen
atoms), plotted against the activation energies that were the
subject of that work. Over a wide dynamic range (nearly 3
decades), there is a very tight relationship between the two, again
including both variations in molecules and radicals. However,
the correlation is totally empirical. We shall show here that this
relationship reflects common control of both parameters. In
particular, the transition state location and the loose frequencies
discussed above are both controlled by the excited ionic states,
but the loose frequencies (and by extension the ionic states)
and not the location govern the preexponential. This is in
constrast to common assumption, which focuses on the transition
state location. The ubiquitous rule used to explain this location
is the Hammond postulate: “If two states. . . occur consecutively
during a reaction process and have nearly the same energy
content, their interconversion will involve only a small reor-
ganization of the molecular structures”.10 In other words,
exothermic reactions have early transition states (resembling
the reactants), and vice versa. In fact the Hammond postulate
does not describe a fundamental aspect of reactivity, and its
empirical success is based on the correlation of the actual

controlling parameters (the excited-state energies) with reaction
enthalpy for selected systems.

There is also a far more modern context for this work than
the Hammond postulate. A widely accepted practice when
comparing ab initio based predictions of rate constants with data
is to assert that ab initio frequencies are generally quite accurate,
while ab initio barriers are known to be less so. Consequently,
practitioners commonly treat the barrier as an adjustable
parameter while leaving the transition state frequencies fixed
(see, for example, Senosiain et al. this issue11). The evidence
for this approach is the well-established accuracy of ab initio
frequency calculations on stable molecules.12 However, there
is no more evidence that this accuracy extends to transition states
(in particular the loose modes that dominate the density of states)
than there is evidence that the relatively accurate energies for
stable molecules extend to transition states. In fact, with very
few exceptions, the only data available to constrain these loose
transition state frequencies are the same rate constants we use
to constrain barriers. We shall argue here that there is every
reason to expect the errors in transition state energies to extend
to these loose modes (and to the imaginary frequency), because
there is very strong evidence suggesting that barriers, loose
modes, and imaginary frequencies are strongly and causally
correlated.

Background

Arrhenius fitting of temperature-dependent rate data (k )
Ae-Ea/RT)13 is ubiquitous. At least for simple reactions, the
enthalpy difference between reactants and a single, well-defined
transition state indeed dominates the observed temperature
dependence. The preexponential in this formalism is related to
the collision probability and an aggregated probability that a
given collision will be properly oriented to produce the transition
state. In the Arrhenius formalism, this term is temperature
independent. This is, of course, not correct. The preexponential
term will increase with temperature, as the system tolerates
collisions off of the ideal orientation.

In transition state theory, this increased reaction probability
is expressed in terms of vibrational modes at the transition
state.14 Together with partition functions associated with transla-
tion and rotation of the transition state and the reactants, partition
functions for these modes describe the preexponential. (For the
Hammond postulate to hold, reaction enthalpy and transition
state location would have to strongly influence these modes.)
Their effect on the rate constant is to cause upward curvature
at high temperature; as temperature increases to the point where
a given vibrational mode is activated above its zero-point energy,
the partition function for that mode will grow larger than unity
and consequently influence the rate constant. Though all
vibrations of reactants and the transition state will contribute
to the rate constant, by far the most influential are vibrational
modes at the transition state that correspond to translation (and
possibly rotation) of the separated reactants; the partition
functions for these different types of atomic motion are
qualitatively very different. These modes describe the orientation
dependence of the reaction probability. Because of this, a
modification of the Arrhenius formalism is often used to fit high-
temperature data for application to combustion kinetics. This
function (k ) B′Tne-Ea/RT) describes the asymptotic behavior of
transition state theory at high temperature.15

In general this vibrational activation leads to upward curvature
in Arrhenius plots of rate constants; the changing partition
functions for reactants and the transition state can be interpreted

Figure 1. Preexponential terms for H atom transfers1 vs activation
energy. The preexponential terms (from a modified Arrhenius form1

similar to one developed here) have been corrected for collisional
reduced mass and the number of available H atoms.
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as changes in the activation energy.16 While this perspective is
quite useful in the context of thermochemical representations
of reactivity, it tends to obscure the separate roles of the
quantum-mechanical barrier to a reaction and the vibrational
modes at the transition state. Consequently, our aim is to develop
a treatment in which the “activation energy” in the Boltzmann
term is as closely related as possible to the actual barrier in the
electronic potential.

At low temperature, when reaction barriers are high compared
to the Boltzmann term, tunneling can be important (especially
if the reduced mass associated with the reaction coordinate at
the barrier is low).17 Where the high temperature activation of
vibrational modes can cause upward curvature in rate data at
high temperatures, tunneling can cause upward curvature at low
temperatures. Because of this, individuals tend to see curvature
in rate data as either evidence for tunneling or evidence for
vibrational activation. The truth can often lie in between.

One other, purely quantum-mechanical effect influences the
rate constant; this is the zero point energy effect.18 Because the
vibrational modes of the separated reagents and the transition
state are different, the total zero-point energy in each case will
also be different. Because several modes are formed at the
transition state and at least one is usually lost (for instance the
C-H stretch in the case of H atom transfer from a hydrocarbon),
the net zero-point energy effect can either raise or lower the
observed barrier. For the H atom transfer example, the barrier
is generally lowered. Because of this effect, there are two energy
surfaces of interest:19 the electronic potential energy surface
under the Born-Oppenheimer approximation (called the Born-
Oppenheimer surface), and the energy surface including zero-
point energy changes (called the vibrationally adiabatic surface).

This would all be pedantic, but for one thing: we fit data,
and we unavoidably attribute physical meaning to the parameters
of that fitting. This is a reasonable thing to dosleast-squares
fitting is a form of inverse modeling, and the parameters in an
inverse model are often exactly what we seek to obtain from
an experiment. However, these parameters only hold meaning
to the extent the model being inverted actually describes the
data. For this reason, parameters in a simple Arrhenius fit are
nearly meaningless; they depend on the temperature range being
fit. Similarly, modified Arrhenius fits are of questionable value
for more than interpolation. They are asymptotically correct at
high temperature, but fail badly at low temperature, whether or
not tunneling influences a given reaction.

One objective of this work is to develop a function that
includes sufficient detail to be meaningful at all temperatures
and to describe the influence of tunneling and zero-point energy
effects. Though such a function will have too many parameters
to be constrained by a single reaction, by studying many
reactions all of the parameters can be meaningfully constrained.
Once we achieve this objective, we can relate these parameters
to real properties of the reactionsthe Born-Oppenheimer
barrier, the transition state frequencies, etc.sand then attempt
to understand how these properties evolve from reaction to
reaction.

Theory

We have shown that a wide range of atom transfer reactions
can be understood in terms of a curve crossing between reactant
and product ground states and purely ionic excited states.1,2 The
evolution of ground- and excited-state energies during a reaction
can be described using a three-stage reaction coordinate,1

depicted in Figure 2 for atom transfer from a molecule, RH, to

a radical X. The reaction coordinate includes two distinct
regions: a far-field region, (stages I and III), where long-range
forces dominate and the R-X distance (r) characterizes the
interaction, and a near-field region (stage II), where the R-X
distance is essentially fixed and the H atom moves along the
R-X axis (F). In the far field, the reactants are two separate
species whose geometry remains undistorted by the interaction.
In the near field, the reactants combine to form a single
macromolecular transition complex, and distortions, including
the atom transfer, dominate the nuclear motions.

This reaction coordinate is neither a trajectory nor a minimum
energy surface but rather a mathematical construct designed to
facilitate calculation of the electronic potential energy surfaces.
In many cases, however, it reasonably approximates the
minimum energy surface. It is particularly well suited to
understanding the evolution of ionic excited states and for
performing overlap calculations based on the work of Fukui.4

Our earlier work focused on the far-field evolution of the ionic-
state energies, which establishes the boundary conditions for
the near-field curve-crossing problem and drives the strong
correlation between measured barrier heights and ionic state
energies. Here we shall consider both the height and location
of the curve crossing during the atom-transfer stage, then discuss
the curvature defining the critical transition-state frequencies.

State Descriptions. Following our earlier approach, we
consider the ground (EG) and ionic (EI) states for the reaction
RH + X f R + HX. These energies are functions of the R-X
distancer (more precisely, they are functions of the distance
between the centers of charge of the reactants). Specifically,

where Eµ represents energy due to long-range interactions
(multipole moments, polarizability, etc.), Eσ represents energy
related to orbital overlap (including nuclear repulsion in the near
field), Ei ) IP - EA is the initial ionic state energy, and

Figure 2. An approximate reaction coordinate for RH+ X f R +
XH, drawn on top of the ground-state surface for the R-H-X system.
It develops in three stages: (I) Approach of RH and X with no
geometric distortion of either species, (II) transfer of H from R to X
with R-X distance constant, (III) departure of XH from R, with no
relaxation.

EG ) EGµ + EGσ

EI ) Ei + EIq + EIµ + EIσ (1)
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EIq ) -e2/r is the Coulombic attraction between the ions. The
long-range interactions are generally attractive, while the short-
range interactions are repulsive. At a givenr, we halt the R-X
approach and allow the H atom to pass between R and X along
F. The total distance traveled by H is 2Rx, which is a function
of r; for linear collisions, 2Rx ) r - (RRH + RHX), but for
nonlinear collisions it is a somewhat more complicated function.
During the atom transfer, the curves corresponding to the ground
and ionic state energies will cross, and the reaction barrier will
be found at or near the crossing point. This is shown in Figure
3. Note thatF ) 0 corresponds to the midpoint between R and
X. We assume that the energies of the unmixed states evolve
linearly over this short distance, matching the boundary condi-
tions at either end. This simplification will affect the absolute
crossing height and location, but will not in general alter
conclusions about the variation of reactivity from system to
system, provided that the shape of the functions remains
constant.6

Transition State Asymmetry. We first find the location of
the crossing point along the atom transfer coordinate. The crucial
terms are the energy gaps between the ground and ionic states
at the beginning and end of the atom transfer:∆ER ) ER

I - ER
G

for the reactants and∆EP ) EP
I -EP

G for the products. These
are all functions ofr, but remain as fixed boundary conditions
for a given curve-crossing problem. Normalizing to the equi-
librium R-X distance, we find

Significantly, the crossing asymmetry depends only on the
relative size of the gaps, and not at all on the reaction enthalpy.
This is in direct opposition to the Hammond postulate. We see
instead that reactions with relatively low excited-state energies
in the reactants will have early barriers, while reactions with
relatively low excited-state energies in the products will have
late barriers. Any relationship between reaction enthalpy and
transition state location is an indirect result of the strong

correlation between ionization potential, singlet-triplet split-
tings, and bond strength in many systems.

Barrier Height. We next find the crossing height. The curve-
crossing energy is

Including the coupling termâ, the barrier height is

Both the magnitude of the two gaps and the reaction enthalpy
contribute to the crossing energy. However, the crossing energy
is essentially the geometric mean of the gaps, meaning that a
small gap on either side of the barrier will force a low crossing
height. The splitting termâ can be very large (of order 0.9)
and is consequently a very important component of the model.
Understanding the control and variation ofâ is a separate issue
that is treated in a separate manuscript.20

Equation 4 is properly asymmetric, with an easily understood
contribution from the reaction enthalpy. The obvious role of
enthalpy is to impose a directionality on the problem; our
preference is to focus on the exothermic (ethalpically preferred)
direction, and to discuss barrier control in that context. Reactions
proceeding against a substantial enthalpy term have an obvious
and large activation term above this interesting barrier.

Though the gaps and reaction enthalpy both contribute to the
crossing height, in general gap sizes (several eV) are roughly
an order of magnitude larger than the enthalpy (several tenths
of an eV). Furthermore, the variation in gap size from reaction
to reaction is much greater than the corresponding variation in
reaction enthalpy. A directly useful aspect of eq 4 is that it may
be differentiated easily with respect to each term, which may
in turn be related easily to measurable properties of the reactants
and products. For example, have recently shown that, for nearly
all of the hydrogen atom transfers referred to earlier, the most
important term controlling barrier heights in eq 4 is the initial
ionic state energy, IP-EA.21 This is true over a wide range of
reaction enthalpies. It is a direct consequence of the attribute
noted above; because the crossing height is a geometric mean,
a single small gap will force a low crossing height, and for
many “normal” reactions, there is a low gap in the entrance
channel corresponding to the initial ionic energy.

One might anticipate anomalous behavior from reactions with
a small gap in the product channel, when the excited states and
the reaction enthalpy are to some extent working in opposition.
Indeed this is true; an example is the unusual kinetics of R+
HBr reactions, which are discussed later in this paper.

Transition State Location. The global transition state
location can be found by differentiating eq 4 with respect tor
and F, then finding a saddle point. To isolate the factors
controlling the transition state interaction distancerx, we shall
consider the symmetric problem (RH+ R f R + RH), where
the transition state lies atF ) 0 and

Figure 3. Evolution of ground (EG) and ionic (EI) energies for reactants
(R) and products (P). The inner curve crossing corresponds to the atom
transfer. Note that the barrier height has been exaggerated for clarity;
barriers in atom transfer reactions are usually a few percent of IP-EA.

Fx

Rx
)

∆ER - ∆EP

∆ER + ∆EP
(2)

EX ) ER
G +

∆ER(∆EP + ∆H)

∆ER + ∆EP
(3)

ETS ) ER
G + (1 - â)

∆ER(∆EP + ∆H)

∆ER + ∆EP
(4)

Ex ) EG + 1/2(E
I - EG)

) 1/2(E
I + EG)

ETS ) Ex - â∆E (5)
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To find the minimum,

Substituting from eq 1,

which will have a minimum at

This equation will only balance when the repulsive termsEσ

develop a significant gradient. By definition, the long-range
forces will go to zero in the near field. Furthermore, the
magnitude and in particular the derivatives of the overlap terms
will be similar on the ground and ionic surfaces. Thus, the
transition state interaction distance is defined by

When the gradient in the coulomb and exchange repulsion
balances the gradient in the ionic energy, the R-X interaction
distance is set and the transition state formed.

Because overlap depends strongly on distancer, eq 9 will
balance at smallEσ; almost as soon as the ground state energy
begins to climb the minimum crossing height will be established.
Furthermore, the initial excited state energy IP-EA is irrelevant
to the location of this saddle point; thus reactions are locked in
to a strongly constrained transition state location. There is little
room for variation from reaction to reaction, except for the
spatial extent of the overlapping orbitals. Spatially extended
systems (large radicals or easily ionized molecules) will balance
eq 9 at a greater interaction distance, both because∂Eσ/∂r will
grow at largerr and becausee2/r2 will be smaller.

Normal Modes. Having derived expressions for the transi-
tion-state location and energy, we must now consider the normal
modes. These are the critical transition-state frequencies shown
in Figure 4. By “normal” we mean normal to the reaction
coordinate; here we shall consider the individual atomic
vibrations without constructing truly normal vibrational modes.
Atom-molecule reactions provide the necessary insight, so in
this work we will focus our attention on those. When an atom
attacks a molecule to initiate an atom-transfer, the three
translational degrees of freedom of the atom are lost in favor
of three vibrational modes at the transition state, while one mode
of the molecule (a stretching mode associated with the atom
being transferred) is lost to the reaction coordinate.

At the transition state (stage II of our reaction coordinate),
the radical approach has stopped and atom transfer commenced,
so this approach has transformed into a stretching mode
corresponding to motion along the diagonal (R-X) in Figure 2
(V2 in Figure 4). The curvature of this mode is controlled by
the same relationships described above in eq 7. It should not
change significantly from reaction to reaction, so the frequency
will only change with reduced mass (mostly varying with
different radicals). For most radicals and most temperatures,
this mode is inactive; however, its zero-point energy will
contribute to the barrier height, leading to higher barriers for
light radicals.

The other two modes formed from the atom translation are
bends (V1 in Figure 4). They are nearly degenerate for linear
transition states. These bends are perpendicular displacements
of the attacking radical, so to first order they will not alter the
excited state (ionic) energies. Curvature in the potential is
generated by the breakdown of overlap in the bend, which in
turn decreases the splitting termâ in eq 4. We can easily see
how this varies from reaction to reaction. For the normal
coordinateq⊥:

Furthermore, the variation in crossing height from reaction to
reaction is best described multiplicatively, i.e.,Exr2 ) fr2Exr1,
so

In words, we expect a strong correlation between barrier heights
and these loose bending frequencies. Because of neglected terms
and changes in the reduced mass of this mode, the relationship
between frequency and energy will not be exactly 1:1, but
neither should it be 0.1:1. For a homologous series, large
fractional changes in the barrier height will correspond to large
fractional changes in the bending mode frequencies.

Tunneling. The imaginary frequency of the atom-transfer
mode is crucial to any tunneling, which is the other source of
the primary kinetic isotope effect.17,23The relationship between
excited state energy and transverse frequency (eq 12) will also

∂Ex

∂r
) 0;

∂EI

∂r
) - ∂EG

∂r
(6)

∂ETS

∂r
) ∂EIq

∂r
+ ∂

∂r
(EIµ + EIσ) + ∂

∂r
(EGµ + EGσ) (7)

∂EIq

∂r
+ ∂

∂r
(EIµ + EIσ) ) - ∂

∂r
(EGµ + EGσ) (8)

e2

r2
= -2

∂Eσ

∂r
(9)

Figure 4. Normal modes influencing the rate constant, shown for
radical (X) attack on a hydrocarbon. Schematic orbitals illustrate orbital
overlap contributions. The imaginary modeνi for atom transfer controls
the tunneling coefficientκ. Transverse motion of X yields two
degenerate bends of low frequency that will be active at most
temperatures. Longitudinal motion of X yields a higher frequency mode
active only at high temperature; however, the zero-point energy
associated with this mode adds to the barrier. Finally, zero-point energy
lost from the imaginary mode (C-H stretch) also contributes to the
barrier.

∂
2Eb

∂q⊥
2

)
∂

2ER
G

∂q⊥
2

- â
∂Ex

2

∂q⊥
2

- Ex
∂

2â
∂q⊥

2
(10)

= Ex
∂

2â
∂q⊥

2
(11)

νr2 ) fr2νr1 (12)
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apply to the imaginary frequency. We can approximate the
influence of tunneling with a one-dimensional treatment. While
this clearly neglects significant aspects of the reaction dynamics,
it provides us with a heuristically useful functional form that
captures the principal effects of tunneling on the thermal rate
constant.

Rewriting Truhlar’s one-dimensional, parabolic tunneling
coefficient17 in terms of a tunneling temperature,Tt ) pω/(2πkB)
and a barrier temperatureTb ) Ea/kB, we find

The tunneling temperature is a characteristic temperature below
which tunneling causes significant curvature in the rate constant
temperature dependence. The tunneling temperature will evolve
together with the barrier across a homologous series of reactions;
from eq 13 we can see that this will tend to reduce the influence
of tunneling as barriers are lowered.

Zero-Point Energies.Several modes contribute to zero-point
energy differences between the reactants and products. One is
the zero-point energy of the critical bending mode (ν1) described
above. In a homologous series, as the physics of the curve
crossing simultaneously depresses the Born-Oppenheimer
barrier and the bending frequency, the zero-point energy of this
mode will also drop. This will amplify the effect on the observed
barrier. Because of the common controlling physics, the effects
will be almost impossible to separate experimentally.

Some modes associated with the atom transfer are also
important. At the transition state, one stretching mode vanishes
entirely (νi in Figure 4), and two associated bends will also be
loosened. While none of these modes will be active at
temperatures below∼2000 K, the reduction in zero-point
energies will lower the vibrationally adiabatic barrier. For H
atom transfers, this effect can be large (∼2500 K), and it is a
major contributor to the large primary kinetic isotope effect.19

Application

We can describe the temperature dependence of radical-
molecule reactions with modified Arrhenius functions motivated
by the above considerations. There are two reasons to do this:
first, if we can write an equation that is functionally correct at
both high and low temperature, we reduce the bias in our data
analysis, and second, the more closely related the fit parameters
are to actual physical quantities, the more useful they will be
in subsequent analyses. Rather than attempting to accurately
reproduce individual data points through high level calculations,
we seek to understand the evolution in these fit parameters
across a wide set of reactions, thereby gaining insight into the
mechanisms controlling reactivity in general.

For an atom attacking a molecule, forming a linear (X-H-
C) transition state, we can write a reduced transition state
expression:

The termκ(T,νi) is the tunneling coefficient (defined with respect
to the vibrationally adiabatic barrier,Eb + ∆Ezp), andSdescribes

the number of identical reaction paths. The preexponential term
B includes all of the vibrational partition functions we have
neglected; however, all of the neglected modes will be present
in both the reactant molecule and in the transition state, and in
general their frequencies will be similar in each case. Thus, even
if the modes are active, the partition functions should cancel.
For this reason,B can not be substantially different from unity.
As we shall see, this is a powerful constraint.

The electronic coefficient,g(T) accounts for degeneracy at
the transition state (usually the spin multiplicity of the transition
state) and the electronic partition function of the radical.
Consistent with current theory, we assume that only the ground
electronic state at the transition state contributes to the reaction,
while several low-lying electronic spin-orbit states of the radical
may be important.22 To account for the Jahn-Teller transition
states in O(3P) + RH reactions we assign a spin-degeneracy of
6 to the transition state in these reactions.22 The bottom line
effect of this term is to reduce the rates for2P3/2 radicals
(halogens) by slightly more than a factor of 2 and add a small
additional temperature dependence to O(3P) reactions.

By itself, this expression is no different than any other
presentation of transition state theory. Viewed in the context
of what controls the terms in these expressions, however, it
clearly suggests a strategy for separating these terms using a
series of atom transfers from different molecules to different
radicals. Also, because this expression is fundamentally experi-
mental (in that it is used to fit data), there is no need to claim
that the frequencies of these normal modes are exactly at the
saddle point. The reduced transmission coefficient found in
variational transition state theory is easily and naturally accom-
modated.

What we can now say is thatνi, ν1, andEa should vary in
concert. Therefore, we should be able to analyze data from a
series of reactions using the above functional form to reveal
this relationship. Because our objective is to analyze a series
of reactions in which both the molecules and radicals are
changed, we have explicitly included the change in zero point
energy. This is another contribution to the barrier height that
we should be able to extract from experimental data without
turning to high level calculations. In particular, by paying careful
attention to how primary and secondary kinetic isotope effects
vary over a wide range of temperatures in an extensive reaction
set, we should be able to separate the tunneling and vibrational
isotope effects, thus providing experimental constraints on all
of the important terms contributing to reactivity.

Results

Atom Transfer by Atoms. Now we can again consider the
relationship between barrier height and the pre-exponential
shown in Figure 1. In the analysis leading to that figure,1 we
held the frequencies fixed in equations similar to 14, neglected
tunneling, and fit for a combined preexponential including all
of the other non-exponential terms. To produce Figure 1 we
removed the contribution of the reduced mass (µ) and crudely
accounted for the number of reactive hydrogens as the number
of most substituted hydrogens. Now we understand how the
frequencies should vary, and we have collected most of the
poorly constrained parameters into a single parameter (B) in eq
14 that should be close to unity. For the broad series shown in
Figure 1, at least two other issues want better constraint: often
multiple reaction pathways contribute to the overall rate
constant, and for abstractions by OH radicals the mode
associated with OH rotation or torsion about the transition state
introduces uncertainty.

κ(T) ) { Tt/T

(Tt/T) - 1 (exp[(Tt

T
- 1)Tb

Tt
] - 1) T e Tt

πTt/T

sin(πTt/T)
-

Tt/T

1 - Tt/T
exp[(Tt

T
- 1)Tb

Tt
] T > Tt

(13)

k )

g(T)Bκ(T,νi) (10-10 Sµ-3/2x ITS
3

IMol
3 )

(1 - e(-1.44ν1)/T)2(1 - e(-1.44ν2)/T)T1/2
e(-Eb+∆Ezp)/T (14)
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We have therefore reanalyzed the data for a subset of these
reactions (H, O, F, and Cl+ methane, ethane, cyclopentane,
and cyclohexane); abstractions by atoms where there is little
ambiguity as to the appropriate number of reactive pathways.
These are the reactions plotted with supplemental open symbols
in Figure 1. This analysis is impossible without including
tunneling. The vibrational terms in eq 14 cannot go below unity,
and yet without a tunneling term the data for the reaction H+
methane can only be fit with the parameterB equal to∼0.05,
which is unrealistically low. However, by including tunneling
(eq 13), we can hold the preexpoential term at unity and obtain
a reasonable imaginary frequency (-1750/cm) and radical-bend
frequency (550/cm). This strongly confirms the computational
results showing a significant tunneling coefficient in H atom
transfers with large barriers.23,24

This example also serves to illustrate the limits to our ability
to treat the solution to eq 14 as a strict inverse problem. Several
parameters show strong covariance, and it is difficult or even
impossible to fit for all of them without imposing additional
constraints. In this case our main constraint is that the parameters
be physically “reasonable,” which is another reason for insisting
that the parameters relate directly to physical properties of the
reaction. Within the confines of reasonability, however, the
parameters resulting from this exercise are derived results, not
a priori guesses.

Though there is considerable freedom presented by the
parameters in eq 14, the analysis of a series of reactions provides
sufficient constraint, as we shall see below. In this analysis, we
require a preexponential (B) near unity (within∼10%) and vary
the transverse frequencies (assumed degenerate) and imaginary
frequency until this condition is met. The moments of inertia
are fixed, based on low level ab-initio determinations of the
saddle point location, and the radical stretch frequency varies
only with collisional reduced mass. The normal frequencies
augment the rate constant at high temperature, when the
vibrational partition function grows, while tunneling augments
the rate at low temperature.

The results are shown in Figure 5. The first part (Figure 5a)
shows an example fit for Cl+ methane. In addition to the data,
three functions are shown. The overall fit describes the data,
easily reproducing the observed curvature. Below that is the
same function with the tunneling coefficient set to unity; the
difference between these two curves is thus the tunneling
contribution. It grows from∼20% at 500 K to a factor of 10 at
200 K. This agrees well with recent computational results.25

Below this curve is the same function with both tunneling and
the vibrational partition function set to unity; the difference
between these lower two curves is thus the contribution of
vibrational activation at the transition state. This contribution
is an almost perfect inverse of the tunneling. For this reaction
the observed curvature is therefore due neither to tunneling at
low temperature nor vibrational activation at high temperature
but an equal mix of both.

The remaining panels in Figure 5 show the important
parameters from the analysis. In Figure 5b we compare the
relationship between the predicted curve crossing height and
the observed barrier. The details of this calculation are identical
to those presented in our earlier work;1 the results is, if anything,
more compelling. The barrier height plotted on the ordinate is
now closely tied to the Born-Oppenheimer barrier height
because we have now accounted for both zero-point energy
changes and tunneling. The resulting correlation is considerably
tighter than before. In particular, we now understand the
seemingly anomalous barriers for abstraction by H atoms. The

activation energy in those reactions is increased by∼500 K by
the high zero-point energy of the H atom approach coordinate,
as described earlier.

Figure 5c shows the relationship between the barrier heights
and the imaginary frequencies for these reactions. It is very tight,
as expectedsthere are few if any complicating factors here. Not
only is the correlation tight, but both the barrier height and the
imaginary frequency vary over a wide range; we are not looking
at a subtle effect. This is consistent with our earlier assertion
that the boundary conditions imposed by the ionic states
dominate both of these terms.

The imaginary frequency derived here may or may not
correspond directly to an ab initio imaginary frequency; it is a
fitting result and should thus be regarded as a characteristic
frequency that provides the tunneling demanded by the data
and the functional form we have employed for the tunneling
contribution. For example, work presented in this issue suggests
that a WKB treatment carried out along the minimum energy
path yields a far more accurate tunneling correction than a
simple calculation based on the computed imaginary fre-
quency.11 Our result in no way contradicts this. We do find
that this frequency evolves over the reaction series, and in this
we disagree with earlier treatments,23 which have either found
or assumed a nearly constant imaginary frequency within a given
class of reactions (such as H atom transfer).

Finally, Figure 5d shows the relationship between the barrier
heights and the normal frequency. Again, there is a pronounced
relationship, albeit with more scatter. This is consistent with
our expectations; Other factors, such as the reduced mass of
these bends, also contribute to the result. At one extreme (Cl+
methane), the attacking radical is heavy compared to the
molecular group (methyl), while at the other extreme (O+
cyclohexane), the attacking radical is light. This certainly
contributes to the observed spread. Furthermore, all other sources
of variability, including experimental error, have been visited
on this one parameter. Notwithstanding, there is a strong
correlation between barrier heights and the normal frequencies;
at this point all of the terms associated with the observed rate
constants are explained by our simple theory.

Discussion

General Issues.This work strongly confirms our earlier
conclusion that the crossing of ionic and neutral surfaces controls
barrier heights in many radical-molecule reactions.1 The excited
state used in this analysis is purely ionic; we do not create a
mixed state including both covalent and ionic components,
which is necessary in some other systems.3,6 Not only have we
now eliminated several simplifying assumptions of that work,
we have simultaneously described the evolution of all of the
important parameters controlling reactivity in these reactions,
not just the barrier height. In this reaction set, for both barrier
height and preexponential terms, reaction enthalpy is at most a
minor contributor. This contradicts received chemical wisdom.
It also provides a qualitatively different understanding from the
“singlet-triplet” model,6 though these two models converge at
second order. That model accommodates a reaction enthalpy
signature, as singlet-triplet splittings are directly related to bond
strengths, while ionic properties, particularly electron affinities,
are not so related. The ionic properties enter at second order as
a polar effect on the transition state, mixing a state with charge
separation with the neutral first order transition state. In both
models, the reactant and product energy gaps are the actual
controlling factors of both barrier height and location. It is not
necessary in our model for the transition state to be at all polar;

Hammond Postulate J. Phys. Chem. A, Vol. 105, No. 9, 20011495



charge separation is only generated at the transition state if
excited state polarity is maintained along the reaction coordinate,
which need not be so. If polarity reverses (for example, the
radical on either side of the reaction coordinate is the electron
acceptor), a transition state whose energy is entirely controlled
by excited ionic states can show no charge separation at all.

We have recently extended this model to treat H atom
additions to unsaturated hydrocarbons.3 In that work we present
a model combining covalent and ionic excited states into a
mixed excited state to constrain a two state crossing problem.
That analysis reveals a roughly equal contribution to addition
barrier heights from both ionic and molecular triplet excited
states, but shows that variation of the ionic state drives most of
the variability observed in the rate constants.

Other Applications. Here we have focused on atom-
molecule reactions with a single reaction pathway to isolate the

critical factors driving reactivity. Treatment of OH-alkane
reactions will follow; by using a similar approach, combined
with data for primary kinetic isotope effects, we can accurately
separate multiple reaction pathways from kinetic data and treat
each pathway as a separate curve crossing. More data on both
primary and secondary kinetic isotope effects for a series of
radicals will substantially improve our ability to constrain these
calculations.

It is also important to note that barrier height control need
not be driven by the reactants; in fact, symmetry demands that
either reactants or products (or both) exert control. Equation 3
reveals that a low ionic surface in either the entrance or the
exit channel of the reaction will force a low barrier. Thus, there
should be reactions in which the reactant ionic energy is high,
and yet the barrier itself is low because of a low product ionic
energy. An example is the reaction series HBr+ R f Br +

Figure 5. (a) Fit for the reaction Cl+ methane. In addition to the data, three curves are shown: the overall expression for the rate constant, the
rate constant with no tunneling, and the rate constant with no tunneling or vibrational activation. (b) Barrier heights vs calculated ionic curve
crossing heights for a series of atoms (H, O, F, Cl) reacting with a series of alkanes (methane, ethane, cyclopentane, and cyclohexane). (c) Imaginary
frequencies vs barrier heights for the same series. (d) Perpendicular (radical bend) frequencies vs barrier height for the same series. The strong
covariance and tight correlations in these three plots (b, c, d) demonstrates the common controlling physics for (b) barrier heights, (c) tunneling,
and (d) the preexponential.
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RH, where the reactant ionic energy is high but the product
ionic energy is very low and the barrier is correspondingly low.
In this series, the reverse reaction (Br+ alkane) is hindered by
a large positive reaction enthalpy, despite the high electron
affinity of the Br atom; however, the Br electron affinity still
forces a low barrier in the enthalpically preferred direction. For
instance, there is currently a significant disagreement in the
experimental value of the C2H5 + HBr barrier,26-28 but even
the highest observed barrier is only 444 K. It is possible that
the breakdown of the Hammond postulate for this reaction
suggested by our theory explains the unusual temperature
dependence reported in two of the studies.26,27The reaction has
a very low barrier, a late transition state driven by a small
product-channel gap, and a very strong permanent dipole in one
of the reactants (HBr); consequently, the van der Waals complex
in the entrance channel could play an important role in the
reaction dynamics. It is possible that this complex could force
the transition state energy below the reactant energy, generating
a negative temperature dependence. However, confirmation of
this awaits both resolution of the experimental discrepancy and
more detailed theoretical treatment of the reaction.

Finally, though we have focused on understanding the
preexponential, which has little to do with the transition state
location, our theory does describe computed barrier locations
very well. For example, we were able to reproduce ab initio
barrier locations for OH attack on methane, ethane, propane,
and cyclopropane using eq 2.2 The reaction F+ H2 f HF + H
is often presented as a canonical example of the Hammond
postulate. The transition state is very early, and the reaction is
highly exothermic (32 kcal/mol). However, the barrier location
is easily understood in the context of eq 2. The reactant excited
state energy much lower than the product excited state energy,
and this asymmetry, not the high reactant enthalpy, produces
the early transition state.

Conclusions

The difference between thermodynamics and kinetics is
profound. Reaction enthalpy is a thermodynamic imperative,
but it is not a kinetic motive force; it controls neither reaction
barrier heights nor their location. In fact, it barely influences
either. The true controlling factor of both is the excited-state
splitting of reactants and products. For some covalent systems,
the dominant splitting is a singlet-triplet splitting;6 however,
for many others, including many atom-transfer reactions,
experimental evidence indicates that the ionic-state splittings
dominate.1 Furthermore, in general the variation of reactivity
is more significant than its absolute value; in this case the
influence of the ionic states is amplified by their comparatively
wide dynamic range of energies.

Here we have shown how reaction barriers, tunneling, and
preexponentials (dominated by a few key vibrational partition
functions) vary together, driven in concert by evolving ionic
excited states. We have shown that low barriers can be created
by low ionic surfaces in either the entrance or the exit channel
of reactions.

What have we gained? For one, we have a completely
consistent description of the rate constant for atom transfers.
We understand how all of the important parameters evolve in
a series of reactions involving many radicals reacting with many
molecules. For another, we have produced a functional form
based on transition state theory including tunneling that
explicitly includes all of these parameters. The combination is
powerful. While the functions are under-constrained for an
isolated reaction, seemingly degenerate parameters are rendered

orthogonal after consideration of an appropriately constituted
homologous series. Furthermore, when data are fit to these
forms, the resulting parameters are theoretically meaningful; the
barrier heights correspond closely to the Born-Oppenheimer
barrer, while the real and imaginary frequencies correspond to
the entropic constraints at the transition state. All can be directly
compared to computational results. However, these functions
are by no means mere regurgitations of more sophisticated
theoretical computations; they are parametric forms fit to data,
which reproduce the observations with great precision. Theory
and experiment can now meet halfway; Arrhenius analysis
produces results that can be tested against theories with the
minimum necessary physics.

To return to the title of this paper, the Hammond postulate
is an example of a proposition that is doubly removed from the
physics truly controlling reactivity. Reaction asymmetry (the
similarity of a transition state to either reactants or products) is
controlled not by reaction enthalpy but by asymmetry in reactant
and product ionic excited states. Furthermore, this asymmetry
has little to do with observed rate constants; these are instead
controlled by variations in these excited state energies from
reaction to reaction, which in turn control both barrier heights
and normal-mode frequencies. The Hammond postulate works,
in the sense that there is often a correlation between reaction
enthalpy andA factors, but this is essentially coincidence.
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